PCAEval Class and Associated Methods in PCAEval.py¶
PCAEval¶
PCAEval¶
Implementation of scGen model for batch removal and perturbation prediction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData
|
An AnnData object that has been registered via |
required |
hidden_dim
|
int
|
Number of nodes per hidden layer. |
required |
latent_dim
|
int
|
Dimensionality of the latent space. |
100
|
n_layers
|
int
|
Number of hidden layers used for encoder and decoder NNs. |
required |
dropout_rate
|
float
|
Dropout rate for neural networks. |
required |
**model_kwargs
|
Additional keyword arguments for |
required |
Examples:
>>> vae = scgen.SCGEN(adata)
>>> vae.train()
>>> adata.obsm["X_scgen"] = vae.get_latent_representation()
Source code in vidr/PCAEval.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
get_gene_perturb_coef(delta)
¶
Get gene perturbation coefficients for a given delta.
This method calculates gene-specific perturbation coefficients using the decoder's weights and the provided delta. If you have performed linear regression, you can input the regression weights for delta. This will provide general regression weights instead of gene-specific ones. The method uses the dot product of the linear decoder's weights with the delta to compute the coefficients and returns a DataFrame of genes and their perturbation coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
delta
|
ndarray
|
The delta vector, representing the difference between control and treated conditions in latent space. |
required |
Returns:
Type | Description |
---|---|
pd.DataFrame: A DataFrame containing genes as the index and their perturbation coefficients as a column. |
Raises:
Type | Description |
---|---|
Exception
|
If the model is not trained or the decoder is non-linear. |
Example
delta = np.random.randn(latent_dim) gene_coef_df = model.get_gene_perturb_coef(delta) print(gene_coef_df)
Source code in vidr/PCAEval.py
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
get_pseudo_dose(delta, cell_types=None)
¶
Calculate the pseudodose ordering of cells by projecting them orthogonally onto the span of the delta.
This method computes the pseudodose values of the cells by projecting the cells' expression data onto the latent vector (delta). It can be applied to specific cell types if provided. The pseudodose values represent the orthogonal projection of each cell onto the delta, which can be interpreted as a measure of cell state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
delta
|
ndarray
|
The latent vector representing the perturbation or difference between two conditions in latent space. |
required |
cell_types
|
list of str
|
A list of cell types to include in the pseudodose calculation.
If |
None
|
Returns:
Type | Description |
---|---|
numpy.ndarray: An array of pseudodose values for each cell, representing its position along the span of delta. |
Example
delta = np.random.randn(latent_dim) pseudo_dose = model.get_pseudo_dose(delta, cell_types=["CD4T", "B-cells"]) print(pseudo_dose)
Source code in vidr/PCAEval.py
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
predict(cell_type_key=None, treatment_key=None, ctrl_key=None, treat_key=None, cell_type_to_predict=None, regression=False, continuous=False, doses=None)
¶
Predicts the cell type provided by the user in the treated condition.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cell_type_key
|
str
|
Key for the cell type information in |
None
|
treatment_key
|
str
|
Key for the treatment or condition information in |
None
|
ctrl_key
|
str
|
Key for the control condition in |
None
|
treat_key
|
str
|
Key for the treated condition in |
None
|
cell_type_to_predict
|
str
|
The cell type to be predicted. Defaults to None. |
None
|
regression
|
bool
|
Whether to perform regression on the latent space. Defaults to False. |
False
|
continuous
|
bool
|
Whether to predict continuous doses. Defaults to False. |
False
|
doses
|
list
|
List of doses to predict if |
None
|
Returns:
Name | Type | Description |
---|---|---|
AnnData |
AnnData
|
An AnnData object containing the predicted cells in the primary space.
If |
Source code in vidr/PCAEval.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
reg_mean_plot(adata, axis_keys, labels, condition_key, path_to_save='./reg_mean.pdf', save=True, gene_list=None, show=False, top_100_genes=None, verbose=False, legend=True, title=None, x_coeff=0.3, y_coeff=0.8, fontsize=14, **kwargs)
¶
Plots mean matching figure for a set of specific genes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adata
|
AnnData
|
AnnData object with equivalent structure to the initial AnnData. If |
required |
axis_keys
|
dict
|
Dictionary of |
required |
labels
|
dict
|
Dictionary of axis labels in the form |
required |
path_to_save
|
str
|
Path where the plot will be saved. |
'./reg_mean.pdf'
|
save
|
bool
|
If |
True
|
gene_list
|
list
|
List of gene names to be plotted. |
None
|
show
|
bool
|
If |
False
|
Examples:
>>> import anndata
>>> import scgen
>>> import scanpy as sc
>>> train = sc.read("./tests/data/train.h5ad", backup_url="https://goo.gl/33HtVh")
>>> scgen.setup_anndata(train)
>>> network = scgen.SCGEN(train)
>>> network.train()
>>> unperturbed_data = train[((train.obs["cell_type"] == "CD4T") & (train.obs["condition"] == "control"))]
>>> pred, delta = network.predict(
>>> adata=train,
>>> adata_to_predict=unperturbed_data,
>>> ctrl_key="control",
>>> treat_key="treatulated"
>>> )
>>> pred_adata = anndata.AnnData(
>>> pred,
>>> obs={"condition": ["pred"] * len(pred)},
>>> var={"var_names": train.var_names},
>>> )
>>> CD4T = train[train.obs["cell_type"] == "CD4T"]
>>> all_adata = CD4T.concatenate(pred_adata)
>>> network.reg_mean_plot(
>>> all_adata,
>>> axis_keys={"x": "control", "y": "pred", "y1": "treatulated"},
>>> gene_list=["ISG15", "CD3D"],
>>> path_to_save="tests/reg_mean.pdf",
>>> show=False
>>> )
Source code in vidr/PCAEval.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|